Neurturin Gene Therapy Protects Parasympathetic Function to Prevent Irradiation-Induced Murine Salivary Gland Hypofunction
نویسندگان
چکیده
Head and neck cancer patients treated with irradiation often present irreversible salivary gland hypofunction for which no conventional treatment exists. We recently showed that recombinant neurturin, a neurotrophic factor, improves epithelial regeneration of mouse salivary glands in ex vivo culture after irradiation by reducing apoptosis of parasympathetic neurons. Parasympathetic innervation is essential to maintain progenitor cells during gland development and for regeneration of adult glands. Here, we investigated whether a neurturin-expressing adenovirus could be used for gene therapy in vivo to protect parasympathetic neurons and prevent gland hypofunction after irradiation. First, ex vivo fetal salivary gland culture was used to compare the neurturin adenovirus with recombinant neurturin, showing they both improve growth after irradiation by reducing neuronal apoptosis and increasing innervation. Then, the neurturin adenovirus was delivered to mouse salivary glands in vivo, 24 hr before irradiation, and compared with a control adenovirus. The control-treated glands have ∼50% reduction in salivary flow 60 days post-irradiation, whereas neurturin-treated glands have similar flow to nonirradiated glands. Further, markers of parasympathetic function, including vesicular acetylcholine transporter, decreased with irradiation, but not with neurturin treatment. Our findings suggest that in vivo neurturin gene therapy prior to irradiation protects parasympathetic function and prevents irradiation-induced hypofunction.
منابع مشابه
Parasympathetic stimulation improves epithelial organ regeneration
Parasympathetic nerves are a vital component of the progenitor cell niche during development, maintaining a pool of progenitors for organogenesis. Injured adult organs do not regenerate after parasympathectomy, and there are few treatments to improve organ regeneration, particularly after damage by therapeutic irradiation. Here we show that restoring parasympathetic function with the neurotroph...
متن کاملRadioprotective effects of Keratinocyte Growth Factor-1 against irradiation-induced salivary gland hypofunction
Irradiation can cause salivary gland hypofunction, with hyposalivation producing discomfort, health risks, and reducing function in daily life. Despite increasing translational research interest in radioprotection, there are no satisfactory treatments available. Keratinocyte growth factor-1 stimulates proliferation of salivary epithelial cells or salivary stem/progenitor cells. However, the exa...
متن کاملPrevention of irradiation-induced salivary hypofunction by rapamycin in swine parotid glands
Radiotherapy is commonly used in patients with oral cavity and pharyngeal cancers, usually resulting in irreversible salivary hypofunction. Currently management of radiation damage to salivary glands still remains a great challenge. Recent studies show that activation of mammalian target of rapamycin (mTOR) occurs in salivary gland lesions, making it possible to apply mTOR inhibitor for treatme...
متن کاملCancer Therapy: Preclinical Prevention of Radiation-Induced Salivary Hypofunction Following hKGF Gene Delivery to Murine Submandibular Glands
Purpose: Salivary glands are significantly affected when head and neck cancer patients are treated by radiation. We evaluated the effect of human keratinocyte growth factor (hKGF) gene transfer to murine salivary glands on the prevention of radiation-induced salivary hypofunction. Experimental Design: A hybrid serotype 5 adenoviral vector encoding hKGF (AdLTR2EF1a-hKGF) was constructed. Female ...
متن کاملRadioprotective effect of thymol against salivary glands dysfunction induced by ionizing radiation in rats
The aim of this study was to investigate the radioprotective effect of thymol as a natural product against salivary glands dysfunction induced by ionizing radiation in rats. The rats were treated with thymol at dose of 50 mg/Kg before exposure to radiation at dose 15Gy. Salivary gland function was evaluated with radioisotope scintigraphy and then salivary gland to background counts ratio was ca...
متن کامل